说课教案
课题:1.1勾股定理
教材:义务教育数学课程标准实验教科书——八年级上册(北京师范大学出版社)
第一章_____ 勾股定理
第一节_____ 探索勾股定理
授课教师:辽宁省营口市实验中学__ 刘丽辉
1、 教学目标:
(1) 知识与技能:掌握勾股定理,并能运用勾股定理解决一些实际问题。
(2) 过程与方法:经历探索勾股定理的过程,体验数学学习探究的方法。经历观察、归纳、猜想、概括等数学学习活动过程,发展合情推理能力,体会数形结合思想。
(3) 情感态度与价值观:
进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识;通过追溯勾股定理的历史,增强学生的爱国情感。
2、 教学重点:
重点:勾股定理的发现及其简单应用
__ 难点:勾股定理的发现
3、 教学方法与教学手段
本课运用“探究式”“启发式”“开放式”的教学方法,运用多媒体等手段充分调动学生参与课堂学习的积极性,鼓励学生积极思考并实现合作学习。
4、 教学过程:创设情境,引发思考――自主探索,合作交流――追溯历史,激发情感――应用拓展,能力提升――回顾反思,提炼升华――布置作业,课堂延伸
(一)、创设情境,引发思考
探究活动1
故事引入:
相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客。在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来。原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方。主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了。原来,他发现了地砖上的三个正方形存在某种数学关系。
(黑白相间的地砖)
教师与学生行为:教师给出一个历史小故事,设置悬念,引发学生思考。
教学效果预估与对策:学生对故事中的问题很感兴趣,能够激发学生的探究欲望。
设计意图:由毕达哥拉斯在朋友家做客的偶然发现入手,引入本节课的课题――勾股定理,学生接受起来更自然,贴切。
(二)、自主探索,合作交流
探究活动1
问题1:你能发现下图中三个正方形面积之间有怎样的关系?
问题2:下图中的各组图形面积之间都有上述的结果吗?
问题3:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系?
教师与学生行为:对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出结论。问题(3)可让学生在自己准备好的小方格上画出,并计算A、B、C三个正方形的面积,用字母表示三个正方形面积之间的数量关系,进而发现了等腰直角三角形三边的特殊关系。并在小组内交流,教师适当引导,深入学生当中,倾听他们的想法。
教学效果预估与对策:对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流想法也会达成共识,对于验证三个正方形面积之间的关系,在方法上会各有千秋。教师同时辅之多媒体的动态演示,使教学效果更直观,利于学生接受,顺利突破难点。
设计意图:通过设计问题串,让探索过程由浅入深,循序渐进。经历观察、猜想、归纳这一数学学习过程,符合学生认知规律。探索面积证法的多样性,体现数学解决问题的灵活性,发展学生的合情推理能力。
探究活动2:
做一做: